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ABSTRACT
Deep multimodal clustering have shown their competitiveness
among different multimodal clustering algorithms. Existing algo-
rithms usually boost the multimodal clustering by exploring the
common knowledge among multiple modalities, which underuti-
lizes the uniqueness of multiple modalities. In this paper, we en-
hance the mining of modality-common knowledge by extracting
the modality-unique knowledge of each modality simultaneously.
Specifically, we first utilize autoencoders to extract the modality-
common and modality-unique features of each modality respec-
tively. Meanwhile, the cross reconstruction is used to build latent
connections among different modalities, i.e., maintain the con-
sistency of modality-common features of each modality as well
as heightening the diversity of modality-unique features of each
modality. After that, modality-common features are fused to cluster
the multimodal data. Experimental results on several benchmark
datasets demonstrate that the proposed method outperforms state-
of-art works obviously.
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1 INTRODUCTION
Multimodal clustering integrates multiple representations together
to identify clusters. The key problem is to obtain the confluent
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features with multiple information. Existing works usually achieve
the confluent features based on traditional clustering and deep
clustering [4][8][12]. On account of the high effectiveness of deep
clustering for feature extraction, we focus on extracting the conflu-
ent features by using multiple deep neural networks (DNN).

Recently, various DNN based multimodal clustering methods
have been proposed, including methods based on Deep Bolzmann
Machine (DBM) and deep autoencoder. The DBM based methods
[9] learn a joint representation of different modalities by DBM.
But due to the high computational costs in high-dimensional data
space, the DBM based methods have not been widely studied in
recent years. The autoencoder based methods use autoencoders to
extract low dimensional features of each modality and fusion the
multimodal features to best reconstruct the input data [6, 10].

Although autoencoder based methods have been shown effec-
tive in integrating multiple feature knowledge, there is only a lit-
tle study of how multimodal knowledge should be effectively ex-
ploited to maximize clustering performance. Most existing methods
simply extract knowledge that exist in each modality (modality-
common knowledge). In fact, the modalities are complementary,
and each modality may contain some knowledge that do not exist
in other modalities (modality-unique knowledge). It is not adequate
to merely explore the commonness of multiple modalities, which
is difficult to make full use of the knowledge of each modality
comprehensively.

Modality 1 Modality 2
Step1  Deep Commonness and Uniqueness Mining

Step2 Modality Feature Fusion

Fusion

Figure 1: Flow of the proposed method.

Since the multiple modalities share the same clustering results, in
this paper, we enhance the mining of modality-common knowledge
by extracting the modality-unique knowledge of each modality
simultaneously. Taking two modalities for example, the process is
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shown in Figure 1. The proposed method consists of two steps. (1)
Deep commonness and uniqueness mining. Given data x with two
modalities x1 and x2, we extract the modality-common features
z
j
c and modality-unique features z ju of each modality through one
encoder fj (·), j ∈ {1, 2}, and then use two decoders дc j (·) and
дuj (·) to reconstruct the modality-common data x̃ jc and modality-
unique data x̃ ju of each modality. At the same time, the modality
features x̂hjc and x̂

hj
u , h, j ∈ {1, 2},h , j are cross-reconstructed.

By heightening the diversity of modality-unique features of each
modality, we refine the consistency of modality-common features of
each modality. (2) Modality features fusion. We obtain a final shared
feature by fusing the modality-common features through the fusion
layer. Experimental results show that our method outperforms state-
of-the-art methods.

2 THE PROPOSED METHOD
Given multimodal data X = {x1, x2, . . . , xn }, where n is the num-
ber of instances. Each instance contains m modalities, i.e., xi =
{x1i , x

2
i , . . . , x

m
i } and xmi ∈ Rdm is the i-th instance in the m-th

modality. We aim to cluster the multimodal data X into k clusters
C = {c1, c2, . . . , ck }.

2.1 Deep Commonness and Uniqueness Mining
2.1.1 Feature Extraction. For multimodal data, each modality of
the data may contain some knowledge shared by all the modalities
(modality-common knowledge) and some knowledge that other
modalities do not have (modality-unique knowledge). The modality-
common knowledge are usually used to obtain the consensus result
of the multimodal data, and would be refined by excluding the
modality-unique knowledge explicitly. Then, we formulate the data
x
j
i as the sum of modality-common data and modality-unique data
explicitly, i.e.,

x
j
i = x

j
ci + x

j
ui (1)

where x jci and x
j
ui are the modality-common data and the modality-

unique data of the instance x ji respectively.
After that, we extract themodality-common features andmodality-

unique features from x
j
ci and x

j
ui . To complete this task, we take

advantage of the autoencoders since it can preserve the local struc-
ture of data during the clustering process[4]. The autoencoders
contain two parts, one is an encoder and the other is a decoder.

In the encoder part, we employ one encoder to extract themodality-
common features and modality-unique features of each modality
respectively. Denote fj (·) as the encoder mapping function, we
have,

fj (x
j
i ) = fj (x

j
ci + x

j
ui ) = z

j
ci + z

j
ui (2)

where z jci and z
j
ui are the latent modality-common features and

modality-unique features for x jci and x
j
ui respectively.

In the decoder part, we use two decoders to decode z
j
ci and

z
j
ui respectively. Denote x̃

j
ci/x̃

j
ui as the reconstructed modality-

common/modality-unique data of the instance x
j
i , the process of

obtaining x̃ jci and x̃
j
ui through the decoder дc j (·) and дuj (·) can be

expressed as,

x̃
j
ci = дc j (z

j
ci ), x̃

j
ui = дuj (z

j
ui ) (3)

Denote x̃ ji as the reconstructed x
j
i , then, x̃

j
i = x̃

j
ci +x̃

j
ui . Using L2 dis-

tance, the reconstruction loss function to extract modality-common
features and modality-unique features is defined as following,

Lr =

m∑
j=1

n∑
i=1

| |x
j
i − x̃

j
i | |

2 =
m∑
j=1

n∑
i=1

| |x
j
i − (x̃

j
ci + x̃

j
ui )| |

2

=

m∑
j=1

n∑
i=1

| |x
j
i − (дc j (z

j
ci ) + дuj (z

j
ui )))| |

2
(4)

2.1.2 Cross-Modality Reconstruction. Cross-modality reconstruc-
tion is used to establish the relationship among multiple modalities.
Specifically, it maps the modality-common features and modality-
unique features of one modality to other modalities. Cross-modality
reconstruction is expressed as,

x̂
jh
ci = дc j (z

h
ci ), x̂

jh
ui = дuj (z

h
ui ) (5)

where x̂ jhci /x̂
jh
ui is the cross reconstructed data obtained from the

common/unique features of the h-th modality zhci/z
h
ui through the

j-th modality decoder дc j (·)/дuj (·), j,h ∈ [1,m] and h , j.
Theoretically, there are high similarity betweenmodality-common

features of different modalities and a great difference between the
modality-unique features of different modalities. Then, we deal with
the modality-common features and the modality-unique features
respectively.

(1) For the modality-common features, the reconstruction data
x̂
jh
ci should be similar to the data x̃ jci reconstructed by the decoder

дc j (z
j
ci ), that is x̂

jh
ci ≈ x̃

j
ci . Using L2 distance, the loss for the cross-

modality reconstruction of modality-common features can be ex-
pressed as,

Lc =

m∑
j=1

m∑
h=1,h,j

n∑
i=1

| |x
j
i − (x̂

jh
ci + x̃

j
ui )| |

2

=

m∑
j=1

m∑
h=1,h,j

n∑
i=1

| |x
j
i − (дc j (z

h
ci ) + дuj (z

j
ui )))| |

2
(6)

The purpose of Lc is to make x̂
jh
ci + x̃

j
ui approach x

j
i infinitely,

which can reflect that x̂ jhci is very similar to x̃ jci from the side, and
further, it can be concluded that zhci , the common feature of the
modality, is similar to z jci .

(2) For the cross-modality unique features, the reconstruction
data x̂ jhui should be very different from the data x̃ jui reconstructed
by the decoder дuj (z jui ). We use radial basis function as the regu-
larization item to constrain x̂

jh
ui stay away from x̃

j
ui . The loss for

the cross-modality reconstruction of modality-unique features can
be expressed as,

Lu =

m∑
j=1

m∑
h=1,h,j

n∑
i=1

exp(−∥дuj (zhui ) − дuj (z
j
ui )∥

2)

2σ 2 (7)

where σ is the width parameter of the function, which controls the
radial range of the function. We set σ as the median of the pairwise
Euclidean distances between the data points.
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2.1.3 Joint Loss. By synthesizing the above objectives, the over-
all optimization problem of obtaining the modality-common and
modality-unique features is formulated as:

minL = Lr + βLc + γLu (8)

where β,γ > 0 are hyper-parameters. β controls the weight of the
cross reconstruction regularization term and γ controls the weight
of the radial basis function regularization term.

2.2 Modality Feature Fusion
Since multiple modalities share the same clustering results, we fuse
the modality-common features of different modalities to obtain a
consistent feature shared by all modalities, and cluster the data with
this shared consistent feature. We use the fusion layer to extract
the consistent feature data. The fusion layer uses a full connection
layer, and z∗i = Fusion(z1ci , z

2
ci , . . . , z

m
ci ;w) is a shared consistent

features of the modality fusion, where w is the parameter of the
fusion layer. To train the fusion layer, we minimize the following
loss function between z∗i and the modality-common features z jci of
all modalities,

min
w

m∑
j=1

n∑
i=1

| |z∗i − z
j
ci | |

2 (9)

Notice that, we only use the modality-common features of each
modality to learn the fused consistent feature. Comparing with the
approaches merely extracting the modality-common features, the
proposed method refines the modality-common features through
excluding the modality-unique knowledge explicitly.

2.3 The Algorithm
The training process of the proposed algorithm (named as DCUMC)
is divided into two steps. In the first step, we use Eq.(8) to train
the encoders and decoders to extract modality features z jci and z

j
ui .

In the second step, we train the fusion layer through Eq.(9) and
obtain z∗i .

Suppose the maximum number of neurons in each layer of the
encoder/decoder/modality feature fusion network is D̃1/D̃2/D̃3,
and maximum epochs for deep commonness and uniqueness min-
ing/modality feature fusion is T1/T2. Then the time complexity
of the feature extraction stage is O(T1nmD̃2

1 +T1nmD̃2
2), the time

complexity of cross-modality reconstruction stage is O(T1nm2D̃2
2)

and the time complexity of the modality feature fusion stage is
O(T2nmD̃2

3). So the total time of DCUMC is O((T1D̃2
1 + T1D̃2

2 +

T2D̃2
3)nm +T1nm

2D̃2
2) which is polynomial order to the number of

modalitiesm and the number of examples n. Since the number of
modalities in the real world is generally not very large, the DCUMC
algorithm is theoretically efficient and scalable.

3 EXPERIMENT
3.1 Experimental Setup
3.1.1 Datesets. We experiment on following benchmark multi-
modal datasets: AwA1: It contains 5814 instances which is divided
into 10 classes. The three modalities of this dataset respectively are
2000D local self-similarity feature, 2000D SIFT feature and 2000D
1https://cvml.ist.ac.at/AwA/

SURF feature.Caltech1012 and Scene-15 [3]: We extract 254D LBP,
512D GIST and 256D CENTRIST descriptors from these datasets
as three modalites. Caltech101 contains 712 instances of 10 clus-
ters and Scene-15 contains 3000 instances of 15 clusters. CUB3

and Flowers4: We consider the 1024D image features extracted
by Googlenet and 1024D corresponding text features [7] as two
modalities. CUB contains 2889 instances of 50 clusters and Flowers
contains 3235 instances of 50 clusters.

3.1.2 Baselines. (1) Single-modality clustering algorithm: DEC[12],
IDEC[4] and SpectralNet [8]. We cluster each modality and re-
ported the best performance. (2) Traditional multimodal clustering
algorithm: DIMSC[2] and ECMSC[11]. (3) Deep multimodal clus-
tering algorithm: DCCAE[10], DMF_MVC [13], DMSCN[1] and
MvSCN[5]. In order to use the two-modality method DCCAE to
process three modality datasets, we use all combination of two
modalities to train the DCCAE. Then the mean values were calcu-
lated as the final result. (4) To show the influence of modality-
unique features, we also report the result of DCUMC without
modality-unique features (DCMC), which only extracts and cross-
reconstructs modality-common features from each modality.

3.1.3 Parameter Settings. All the parameter settings of the base-
lines are based on the original papers. For the proposed DCUMC,
the encoder and decoder consist of full connection layers. We use
tanh/siдmoid as the activation function on the last layer of the en-
coder and decoderwhich are relevant tomodality-common/modality-
unique features. Meanwhile, RelU is used as the activation function
on other layers of encoders and decoders. The depth of neural net-
work is adjusted according to the dimension of input data. In the
training process, the parameters of the autoencoders and fusion
layers are randomly initialized, and the learning rate α of Adam is
set as 0.001. The weight β and γ are set as 0.3 and 0.1 respectively.
After the training process, we use k-means to cluster the shared
consistent features z∗i . Our implementation is based on Pytorch.

3.2 Experiment Result
We use two widely used metrics to measure the clustering per-
formance: accuracy (ACC) and Normalized mutual information
(NMI). The clustering results of the two metrics are presented in
the Table 1 and Table 2 respectively. In each column of the two
tables, the best result is highlighted in boldface. From the results,
we find that DCUMC is superior to single modal algorithms (DEC,
IDEC and SpectralNet) and traditional multimodal clustering al-
gorithms (DIMSC and ECMSC) on each dataset in terms of ACC
and NMI. The results indicate that it is reasonable to study multi-
modal clusteing and the deep clustering is more effective for feature
extraction tasks. Comparing with the deep multimodal methods
(DCCAE, DMF_MVC, DMSCN and MvSCN), DCUMC outperforms
them generally. As a exceptional case, the NMI of MvSCN is slightly
higher than that of DCUMC on Scene-15 dataset, but the ACC
of DCUMC are superior to MvSCN. Moreover, the performance
of DCUMC outperforms DCMC. In summary, we conclude that

2http://www.vision.caltech.edu/Image\Datasets/Caltech101/
3http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
4http://www.robots.ox.ac.uk/~vgg/data/flowers/102/
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DCUMC achieves good performance on multimodal data. The ex-
tracting of modality-unique features optimize the process of ex-
tracting modality-common features so as to obtain better clustering
results.

Table 1: Clustering accuracy(%).

dataset AwA Caltech101 Scene-15 CUB Flower

DEC 16.10 35.74 16.97 20.11 17.64
IDEC 20.08 43.54 25.03 30.16 28.11

SpectralNet 20.06 40.73 46.33 19.03 27.26
DIMSC 20.79 39.47 23.87 25.16 29.46
ECMSC 22.19 53.90 42.70 47.91 45.24
DCCAE 24.31 62.85 34.95 16.86 20.80

DMF_MVC 17.18 30.34 30.87 22.88 23.99
DMSCN 21.93 52.95 27.59 49.43 62.01
MvSCN 19.99 48.31 45.00 17.51 30.41

DCMC 24.52 68.25 43.93 44.44 55.67
DCUMC 25.61 72.61 54.00 53.06 63.30

3.3 Hyper-Parameter Analysis
In this subsection, we analyze the effect of the hyper-parameters
β and γ for the performance of DCUMC. Due to space limitation,
we only present the results on the Caltech101 dataset. We set β
vary in the range [0.1, 0.3, 0.5, 0.7, 0.9] and γ vary in the range
[0.0, 0.1, 0.3, 0.5, 0.7, 0.9]. Table 3 shows how the performance of
DCUMC varies with different β and γ . From Table 3, we find that
the performance of DCUMC is not satisfactory when γ is set to
0. In this case, the constraint of the modality-unique features on
the modality-common features is removed, which makes it diffi-
cult for the modality-common features to accurately express the
shared consistent features of the whole data. Moreover, DCUMC
achieves stably good performance when β = 0.3 and γ vary in
[0.1, 0.3, 0.5, 0.7]. Then, we finally selected β = 0.3 and γ = 0.1
as the hyper-parameter values of the DCUMC model in the above
experiment.

4 CONCLUSION
In this paper, we propose a novel multimodal clustering algorithm
DCUMCwhich consists of two steps. In the first step, we use one en-
coder to extract the latent modality-common and modality-unique
features for eachmodality, and then use two decoders to reconstruct
themodality-common data andmodality-unique data of eachmodal-
ity. At the same time, the modality features are cross-reconstructed
in other decoders. The second step is to fuse the modality-common
features of different modalities to obtain the shared consistent fea-
tures that are used to cluster dataset subsequently. Experiments
have been carried out to verify the effectiveness of the proposed
method. In the future, we will analysis the common and unique
distribution of each modality.
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